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Motivation

Wall Street subía en la mañana,
beneficiándose de la estabilidad de los
bonos y un rally en el sector de la alta
tecnología después de que Microsoft

Corp anunciara unos resultados
mejores que los previstos. 

Corporativo /
Industrial Economía Gubernamental /

Social Mercados

Figure: An example of document classification. Taken from the MLDoc [42] dataset.
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Motivation

En su lugar entró el chileno Iván Luis Zamorano

PER

Figure: An example of named entity recognition. Taken from the CoNLL2002 NER [46] dataset.
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Motivation

El fútbol chileno le dio la primer alegría a sus
simpatizantes después de casi cien años, obtuvo la

Copa América que este año tuvo a ese país
sudamericano como anfitrión. El partido debió

extenderse hasta la definición vía penales por haber
finalizado sin goles. Por su parte la selección de fútbol
de Argentina suma su tercer derrota en finales y la falta

de títulos desde 1993.

¿Qué ansiado trofeo
ganó la selección
chilena de fútbol?

¿A qué país se
enfrentó Chile en la

final del torneo?

¿Cómo se decidió el
resultado del partido

a falta de goles?

la Copa América Argentina vía penales

Figure: An example of question answering. Taken from the SQAC [20] dataset. 6 / 50



Motivation
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Problem

As models grows in size and computational
complexity, it’s difficult to put them in production
for real time applications or the use of them in
hardware restricted devices like mobile phones.
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Problem

And even more difficult for the Spanish language
because of the lack of Spanish-specific resources

and models.
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Hypothesis and Objectives
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Hypothesis

Adopting more parameter-efficient model architectures and employing
knowledge distillation techniques to transfer knowledge from larger
models to smaller ones can significantly enhance model compactness
and inference speed, while maintaining most of the performance

exhibited by larger models on Spanish NLP tasks.
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General Objective

To develop Spanish language models that are
more compact and computationally efficient while

maintaining high levels of task-performance.
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Specific Objectives

1. To measure the size and inference speed of pre-trained Spanish language models that
are currently available.

2. To develop models for the Spanish language that are more parameter-efficient by
utilizing weight-shared model architectures.

3. To train models for Spanish that are more inference-efficient by applying task-specific
knowledge distillation on Spanish NLP tasks.

4. To evaluate the mentioned techniques on a diverse set of Spanish NLP tasks.

5. To evaluate how the model size impacts the task performance while using these
techniques.

6. To release those models publicly as a resource for further research.
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Background and Related Work
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Background - BERT

BERT

Bad Bunny is a [MASK] music artist from [MASK] Rico

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

Trap Puerto

Prediction Prediction

[CLS] [SEP]

h0 h11

Figure: The masked language modeling (MLM) task used by BERT
as pre-training task.

• Bidirectional Encoder
Representations from
Transformers [17].

• Transformer-encoder.

• Pre-training on MLM and
NSP.

• Fine-tuning on
downstream tasks.

• base (110M) and large
(330M).
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Background - ALBERT

• A Lite BERT [24].

• Transformer-encoder.

• Embedding factorization
and Parameter-sharing.

• Pre-training on MLM and
SOP.

• Fine-tuning on
downstream tasks.

• base (12M) to xxlarge
(235M).

BERT

Encoder Layer 1

Encoder Layer 2

Encoder Layer  3

Encoder Layer N

. . .
Encoder Layer 4

ALBERT

Encoder Layer  1

Encoder Layer  2

Encoder Layer  3

Encoder Layer  N

. . .
Encoder Layer  4

N layers
with

unique
parameters

N layers
with
identical
parameters

Figure: A design comparison of BERT and ALBERT, focusing on the
parameter utilization strategy adopted by each model.

17 / 50



Background - Multilingual and Monolingual Models

• Multilingual models:
• Models that are trained simultaneously using data from several languages.
• Examples: mBERT (104 languages), XLM-R (100 languages.
• Generally, larger vocabularies, to be able to represent all languages.

• Monolingual models:
• Models trained on a single language.
• CamemBERT [29] and FlauBERT [25] for French, BERTje [14] and RobBERT [15] for

Dutch, FinBERT [49] for Finish, BETO [10] for Spanish.
• Generally outperform multilingual models.
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Background - Compression Techniques

• Methods to reduce the overall size or computational complexity of a model.

• Pruning: aims to reduce the number of connections (weights) in a neural network by
identifying and removing redundant connections.

• Quantization: compresses the original network by reducing the number of bits
required to represent each weight.

• Knowledge Distillation: transfers the knowledge from a big model (teacher) to a
smaller model (student) by training the student to imitate the teacher.
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Background - Knowledge Distillation

Figure: The figure provides a visual representation of the Knowledge Distillation [21] framework applied in
this work.
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Background - Knowledge Distillation

Two models, the teacher model, say MT , and a student model, say MS . We train MS to
imitate MT . We define the distillation objective as LKD :

LKD = LO(MT (x),MS(x))

Where LO is a loss function that works on the logits of MT and MS . The most common
choices for this loss are the cross entropy loss, the KL-divergence loss and the
mean-squared error loss.
Also, we can include the gold labels from the training dataset. The complete loss,
accounting these labels can be seen as:

L = αLCE + (1 − α)LKD

Where LCE is the traditional cross-entropy loss against gold labels and α ∈ [0, 1] defines
the weight of each loss.
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Related Work

• Tang et al. [44] uses KD to transfer the knowledge from BERT to lighter RNNs.

• Turc et al. [47] proposes pre-training compact BERT models and then using
task-specific KD to achieve better results.

• Sanh et al. [41] introduces a task-agnostic scheme where KD is used on the
pre-training task.

• Wang et al. [50] and Jiao et al. [22] proposed different methods exclusive for
Transformers, to directly distill the knowledge from the self-attention layers of the
teacher model to the student model.
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Preliminaries: Evaluation Tasks and
Baselines

23 / 50



Evaluation Tasks

1. Text Classification
• Document Classification.
• Natural Language Inference.
• Paraphrase Identification.

2. Sequence Tagging
• Named Entity Recognition.
• Part-of-Speech Tagging.

3. Question Answering

Dataset Name Task Type Number of Categories Train Size Validation Size Test Size

MLDoc [42] Text Classification 4 9458 1000 4000
PAWS-X [52] Text Classification 2 49401 2000 2000
XNLI [11] Text Classification 3 392702 2490 5010
POS [45] Sequence Tagging 18 14305 1654 1721
NER [46] Sequence Tagging 9 8324 1916 1518
MLQA [27] Question Answering - 81810 500 5253
SQAC [20] Question Answering - 15036 1864 1910
TAR / XQuAD [6, 2] Question Answering - 87595 10570 1190

Table: Details of the datasets used to evaluate our proposed models.
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Inference Metrics

Metrics

• Size: Number of Parameters.

• Speed: Multiply-accumulate Operations (MACs).

Conditions

• Batch size = 1.

• Max. sequence length = 512.
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Pre-trained Models for Spanish
Aim

• Include all publicly available Transformer-encoder based models trained on Spanish
general domain corpora as baselines.

Model Name Architecture Size Vocab Size Vocab Types Max Seq Length Parameters Domain Availability Reference
Included

BETO BERT base 32K uncased, cased 512 110M General Public [10]
DistilBETO DistilBERT base 32K uncased 512 67M General Public [18]
RoBERTa-BNE base RoBERTa base 50K cased 514 125M General Public [20]
RoBERTa-BNE large RoBERTa large 50K cased 514 355M General Public [20]
BERTIN RoBERTa base 50K cased 514 125M General Public [12]

Not Included

GPT-2-BNE base GPT-2 base 50K cased 512 124M General Public [20]
GPT-2-BNE large GPT-2 large 50K cased 512 773M General Public [20]
RigoBERTa DeBERTa base 50K - 512 - General Private [43]
RoBERTuito RoBERTa base 30K uncased, cased, deaccented 130 109M Social Media Public [34]
BSC-Bio RoBERTa base 50K cased 514 125M Biomedical Public [7]
RoBERTalex RoBERTa base 52K cased 514 126M Legal Public [19]
Longformer-BNE Longformer base 50K cased 4098 149M General Public -

Table: Summary of pre-trained Transformer models for Spanish.
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Proposed Spanish NLP Resources:
ALBETO and Speedy Gonzales
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ALBETO: Light models for Spanish

ALBETO: a series of 5 lightweight models that follow the ALBERT architecture and
are pre-trained exclusively on Spanish corpora with sizes that range from 5M to

223M of parameters.
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ALBETO: Model Architecture

• ALBERT architecture.

• 31K lowercase subword tokens.

Model Parameters Layers Hidden Embedding
ALBETO tiny 5M 4 312 128
ALBETO base 12M 12 768 128
ALBETO large 18M 24 1024 128
ALBETO xlarge 59M 24 2048 128
ALBETO xxlarge 223M 12 4096 128

Table: The configurations of each ALBETO model trained in this work.
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ALBETO: Training Process
Pr
oc

es
s

Data Collection Data
Preprocessing Pre-training Fine-tuning and

Evaluation
Vocabulary

Creation
Training Instances

Creation

Cleaning

Lowercase

Tokenization

Masking

Serialization
(TFRecords)

MLM & SOP

Figure: A broad overview of the process involved in the creation of ALBETO models. Sub-processes
relevant to distinct stages are portrayed outside the main frame.
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ALBETO: Evaluation

• Fine-tuning on downstream tasks.

• Tasks: text classification, sequence tagging and question answering.

• Hyperparameter search:
• All models:

• Batch size: 16, 32, 64.
• Epochs: 2, 3, 4.

• BETO, DistilBETO, RoBERTa-BNE, BERTIN, ALBETO tiny and base:
• Learning rate: 1e-5, 2e-5, 3e-5, 5e-5.

• ALBETO large, xlarge and xxlarge:
• Learning rate: 1e-6, 2e-6, 3e-6, 5e-6.
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Speedy Gonzales: Fast Models for Spanish

Speedy Gonzales: a collection of fast task-specific language models based on
ALBETO, which were trained using Task-specific Knowledge Distillation.
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Speedy Gonzales: Approach

Candidate Teacher Models

Fine-tuning

Fine-tuned Candidate Teacher Models

Select Best
Model

Teacher
Model

Dataset

Figure: The first stage of our approach, which involves fine-tuning a set of candidate models on a specific
dataset, followed by the selection of the best-performing model as the teacher model for that dataset.
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Speedy Gonzales: Approach

Student Models

Teacher
Model

Dataset

Knowledge
Distillation

Distilled Student Models

Figure: The second stage of our approach, which employs the selected teacher model to train a set of
student models using knowledge distillation.
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Speedy Gonzales: Approach

Candidate teacher models:

• All publicly available Transformer-encoder based models trained on Spanish general
domain corpora.

• BETO, DistilBETO, RoBERTa-BNE, BERTIN and ALBETO.

Student models:

• ALBETO tiny.
• A collection of faster models based on ALBETO base:

• Models that follows the ALBETO base configuration, but with less layers.
• Noted as ALBETO base-n, n ∈ (2, 4, 6, 8, 10).
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Speedy Gonzales: Evaluation

First stage:

• Same as ALBETO evaluation.

• Selected best teacher models.

Second stage:

• Task-specific Knowledge Distillation on downstream tasks.

• Tasks: text classification, sequence tagging and question answering.

• KL-Divergence loss, α = 0 and T = 1.

• Cached teacher predictions.
• Hyperparameter search:

• Batch size: 16, 32, 64.
• Learning rate: 5e-5, 1e-4.
• Epochs: 50.
• Early stopping with tolerance of 10 epochs of no improving.

36 / 50



Results and Discussion
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Task Performance - Text Classification
Model MLDoc PAWS-X XNLI

Fine-tuning

BETO uncased 96.38 84.25 77.76
BETO cased 96.65 89.80 81.98
DistilBETO 96.35 75.80 76.59
ALBETO tiny 95.82 80.20 73.43
ALBETO base 96.07 87.95 79.88
ALBETO large 92.22 86.05 78.94
ALBETO xlarge 95.70 89.05 81.68
ALBETO xxlarge 96.85 89.85 82.42
BERTIN 96.47 88.65 80.50
RoBERTa BNE base 96.82 89.90 81.12
RoBERTa BNE large 97.00 90.00 51.62

Task-specific Knowledge Distillation

ALBETO tiny 96.40 85.05 75.99
ALBETO base-2 96.20 76.75 73.65
ALBETO base-4 96.35 86.40 78.68
ALBETO base-6 96.40 88.45 81.66
ALBETO base-8 96.70 89.75 82.55
ALBETO base-10 96.88 89.95 82.26

Table: Models evaluated on sentence or two sentences classification tasks, results are measured using
accuracy on the test set of each dataset.
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Task Performance - Sequence Tagging
Model POS NER

Fine-tuning

BETO uncased 97.81 80.85
BETO cased 98.95 87.14
DistilBETO 97.67 78.13
ALBETO tiny 97.34 75.42
ALBETO base 98.21 82.89
ALBETO large 97.98 82.36
ALBETO xlarge 98.43 83.06
ALBETO xxlarge 98.43 83.06
BERTIN 99.02 85.66
RoBERTa BNE base 99.00 86.80
RoBERTa BNE large 61.83 21.47

Task-specific Knowledge Distillation

ALBETO tiny 97.36 72.51
ALBETO base-2 97.17 69.69
ALBETO base-4 97.60 74.58
ALBETO base-6 97.82 78.41
ALBETO base-8 97.96 80.23
ALBETO base-10 98.00 81.10

Table: Models evaluated on sequence tagging tasks, results are measured using the F1 Score on the test
set of each dataset.
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Task Performance - Question Answering
Model MLQA SQAC TAR, XQuAD

Fine-tuning

BETO uncased 64.12 / 40.83 72.22 / 53.45 74.81 / 54.62
BETO cased 67.65 / 43.38 78.65 / 60.94 77.81 / 56.97
DistilBETO 57.97 / 35.50 64.41 / 45.34 66.97 / 46.55
ALBETO tiny 51.84 / 28.28 59.28 / 39.16 66.43 / 45.71
ALBETO base 66.12 / 41.10 77.71 / 59.84 77.18 / 57.05
ALBETO large 65.56 / 40.98 76.36 / 56.54 76.72 / 56.21
ALBETO xlarge 68.26 / 43.76 78.64 / 59.26 80.15 / 59.66
ALBETO xxlarge 70.17 / 45.99 81.49 / 62.67 79.13 / 58.40
BERTIN 66.06 / 42.16 78.42 / 60.05 77.05 / 57.14
RoBERTa BNE base 67.31 / 44.50 80.53 / 62.72 77.16 / 55.46
RoBERTa BNE large 67.69 / 44.88 80.41 / 62.14 77.34 / 56.97

Task-specific Knowledge Distillation

ALBETO tiny 54.17 / 32.22 63.03 / 43.35 67.47 / 46.13
ALBETO base-2 48.62 / 26.17 58.40 / 39.00 63.41 / 42.35
ALBETO base-4 62.19 / 38.28 71.41 / 52.87 73.31 / 52.43
ALBETO base-6 66.35 / 42.01 76.99 / 59.00 75.59 / 56.72
ALBETO base-8 67.39 / 42.94 77.79 / 59.63 77.89 / 56.72
ALBETO base-10 68.29 / 44.29 79.89 / 62.04 78.21 / 56.21

Table: Models evaluated on question answering datasets, results are noted as F1 Score / Exact Match on
the test set of each dataset.
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Model Efficiency and Inference Speed
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Figure: Average of performance in the different tasks. The size of the points represents the size of the
model (the number of parameters).
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Inference Speed on Common Hardware

Model
Inferences per second
CPU GPU

Fine-tuning

BETO uncased 3.96 107.19
BETO cased 4.26 109.02
DistilBETO 9.12 217.40
ALBETO tiny 32.53 539.61
ALBETO base 4.50 108.62
ALBETO large 1.29 33.62
ALBETO xlarge 0.35 11.72
ALBETO xxlarge 0.14 6.60
BERTIN 3.99 109.39
RoBERTa BNE base 3.82 107.77
RoBERTa BNE large 1.18 33.65

Task-specific Knowledge Distillation

ALBETO tiny 32.53 539.61
ALBETO base-2 31.08 625.30
ALBETO base-4 15.16 319.32
ALBETO base-6 10.45 213.53
ALBETO base-8 6.82 160.66
ALBETO base-10 6.01 128.38

Table: The number of inferences per second of models on two different hardware settings, CPU and GPU.
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Results - Summary
Model Parameters Speedup Score

Fine-tuning

BETO uncased 110M 1.00x 81.02
BETO cased 110M 1.00x 84.82
DistilBETO 67M 2.00x 76.73
ALBETO tiny 5M 18.05x 74.97
ALBETO base 12M 0.99x 83.25
ALBETO large 18M 0.28x 82.02
ALBETO xlarge 59M 0.07x 84.13
ALBETO xxlarge 223M 0.03x 85.17
BERTIN 125M 1.00x 83.97
RoBERTa BNE base 125M 1.00x 84.83
RoBERTa BNE large 355M 0.28x 68.42

Task-specific Knowledge Distillation

ALBETO tiny 5M 18.05x 76.49
ALBETO base-2 12M 5.96x 72.98
ALBETO base-4 12M 2.99x 80.06
ALBETO base-6 12M 1.99x 82.70
ALBETO base-8 12M 1.49x 83.78
ALBETO base-10 12M 1.19x 84.32

Table: The summary of results of every evaluated model in terms of parameters, inference speedup and
overall score across tasks. The speedup is relative to BETO models. The score column shows the average
of the metrics on all tasks.
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Conclusions
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Summary of Contributions

We introduced ALBETO and Speedy Gonzales, which are two novel
resources for the Spanish NLP community that were created to

improve two key aspects of machine learning models, namely model
size and inference speed.
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Summary of Contributions

ALBETO:

• Language models that were pre-trained exclusively for the Spanish language, with
five different sizes: tiny, base, large, xlarge, and xxlarge.

• Successfully utilize the weight-shared strategy to achieve greater efficiency in terms
of model parameters.

• The base model, which is an uncased model, outperforms the uncased version of
BETO while having significantly less parameters and is marginally inferior to other
base-sized models with a cased vocabulary.

• The xxlarge model outperforms all other models.
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Summary of Contributions

Speedy Gonzales:

• Collection of fast task-specific models trained using Task-specific KD.

• Task-Specific KD is effective in transferring knowledge from a larger model to a
lighter and faster model.

• Speedy Gonzales models achieve comparable task performance to most base-sized
models while exhibiting enhanced inference speed.

• There exists a trade-off between inference-efficiency of the model and task
performance, as observed in the evaluation of the Speedy Gonzales models derived
from the ALBETO base model.

• Some tasks benefit from the use of larger and more computationally complex models
(e.g. QA), while other tasks can be effectively handled by lighter and faster models
(e.g. POS, MLDoc).
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Limitations and Future Research Directions

• We only evaluated our models on a limited set of tasks.

• Our KD method can be further improved to produce more efficient task-specific
language models:

• Explore alternative KD approaches, such as distilling intermediate layers of the teacher
model, in addition to its output.

• A multi-teacher approach could be studied, in which the models learn from a collection
of teacher models rather than just one.

• Combine with other compression techniques, such as parameter-pruning or quantization.

• There exists a trade-off between model size, inference speed, and task performance,
making it challenging to choose an appropriate model without context. It is
important to develop metrics to formally assess the this balance.
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Outcomes

Two publications:

1. ALBETO and DistilBETO: Lightweight Spanish Language Models
• Cañete et al. [5]
• Proceedings of the 13th Edition of The Language Resources and Evaluation Conference

(LREC), Marseille, France.
• Paper, Code

2. Speedy Gonzales: A Collection of Fast Task-Specific Models for Spanish
• Cañete and Bravo-Marquez [9]
• Under review.
• Code

Models:

• Over 140 models (between pre-trained, fine-tuned and distilled models) publicly
available to the research community.

• Models at the HuggingFace Hub
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Machine Learning

• Machine Learning is a subfield of Computer Science that studies the question on how
to build algorithms that can automatically improve through experience [23].

• Two paradigms: unsupervised and supervised.

• Unsupervised: According to Jordan and Mitchell [23], is the ”analysis of unlabeled
data under assumptions about structural properties of the data (e.g., algebraic,
combinatorial, or probabilistic)”. A common example is Clustering.

• Supervised: We use a set of data samples with the form of (x , y), where x is called
an example and y is called its label. The goal is to learn a parameterized function
f (x) that maps from x to y and that generalizes to unseen pairs (x∗, y∗).
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Representation Learning

• In clasical Machine Learning, the input examples x were represented as feature
vectors, which were manually engineered, in a process called ”feature engineering”,
by domain experts who possessed knowledge on the specific task at hand.

• More recently, not only a function f (x) is learned but also a rich and useful
representation x is learned from a simpler representation of the data.

52 / 50



Transfer Learning

• Key idea: reutilize the knowledge (or the representation) learned in one very general
task, to another more specific task.

• In Computer Vision (CV), a model is initially trained on a vast labeled dataset with
distinct categories known as ImageNet [16, 40, 39]. The model is then fine-tuned or
re-trained to perform other tasks or classify objects in categories not present in
ImageNet.

• In Natural Language Processing (NLP), where a model is pre-trained for tasks like
Language Modeling [36, 37, 4] or Masked Language Modeling [17, 24, 28].
Subsequently, the pre-trained model is fine-tuned for several other tasks like
sentiment analysis, question answering, and document classification.
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Representations of Text

• Word Embeddings are a mathematical mapping from a word (a discrete symbol) to a
continuous vector of dimensionality d .

• First, sparse vectors. More recently, learned dense vectors. (e.g. Word2Vec [30],
GloVe [33], FastText [3]).

• One major limitation: Polysemy. They are fixed vectors, meaning that a word is
represented identically, regardless of its context.

• To overcome this limitation, contextual word representations are used nowadays.
These representations not only used a fixed embedding layer, but also deep neural
networks, to account for the complete context of a text in the calculation of a
representation of a word.

• The first contextual representations used RNNs [35] as neural network architecture
and then were replaced in favor of Transformers [17].
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Transformer

Figure: The Transformer
architecture by Vaswani et al. [48].

Scaled Dot-Product Attention
WQ ∈ Rdmodel×dq , WK ∈ Rdmodel×dk , W V ∈ Rdmodel×dv .
Q = XWQ , K = XWK , and V = XW V .

Attention(Q,K ,V ) = softmax(
QKT

√
dk

)V

MultiHeadAttention = Concat(head1, ..., headh)WO

Where, headi = Attention(XWQ
i ,XWK

i ,XW V
i ) and

WO ∈ Rhdv×dmodel .
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Evaluation Tasks - Document Classification -
MLDoc

• Assigning a document to a specific category based on its underlying semantic
meaning.

• The primary objective of Document Classification is to facilitate efficient information
retrieval and management.

• Spanish subset of MLDoc [42]
• A comprehensive multilingual dataset comprising documents in eight languages.
• It is derived from the widely used Reuters Corpus [26].
• Four distinct categories: Corporate/Industrial, Economics, Government/Social, and

Markets.
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Evaluation Tasks - Document Classification -
MLDoc - Example

Wall Street subía en la mañana,
beneficiándose de la estabilidad de los
bonos y un rally en el sector de la alta
tecnología después de que Microsoft

Corp anunciara unos resultados
mejores que los previstos. 

Corporativo /
Industrial Economía Gubernamental /

Social Mercados

Figure: An example of document classification. Taken from the MLDoc [42] dataset.
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Evaluation Tasks - Paraphrase Identification -
PAWS-X

• Determine whether two given sentences possess the same underlying semantic
meaning.

• Spanish subset of PAWS-X [52]
• It is a translation of the PAWS [53] dataset in six different languages.
• The training set of PAWS-X has been machine translated, while the validation and test

sets were professionally translated by human experts.
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Evaluation Tasks - Paraphrase Identification -
PAWS-X - Example

Parafraseo No Parafraseo

Sin embargo, para
derrotar a Slovak, Derek
debe convertirse en un

atacante vampiro.

Sin embargo, para poder
convertirse en Slovak,
Derek debe derrotar a

un asesino de vampiros.

Figure: An example of the paraphrase identification task. Taken from the PAWS-X [52] dataset.

59 / 50



Evaluation Tasks - Natural Language Inference -
XNLI

• Determining the logical relationship between two given sentences, namely a
”premise” and an ”hypothesis”. Specifically, the task requires inferring whether the
premise entails, contradicts, or is neutral to the hypothesis.

• Spanish subset of XNLI [11]
• It is a translation of the MultiNLI [51] to 15 different languages.
• Offers a machine-translated training set while the validation and test sets have been

professionally translated.
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Evaluation Tasks - Natural Language Inference -
XNLI - Example

Neutral Contradicción

Uh-Uh, no, no me
gustaría comer.

Eso es algo que comería
felizmente cada vez.

Implicancia

Figure: An example of natural language inference. Taken from the XNLI [11] dataset.
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Evaluation Tasks - Part-of-Speech Tagging - POS

• Task that aims to assign each word in a sentence its corresponding syntactic category.

• The syntactic categories are based on the grammatical function of the word and
include, among others, nouns, verbs, adjectives, adverbs, and pronouns.

• The dataset used was AnCora [45] which is included on the Spanish part of Universal
Dependencies [13] Treebank.
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Evaluation Tasks - Part-of-Speech Tagging - POS -
Example

El   nuevo   presidente   de   Chile   ,   el   socialista   Ricardo   Lagos   .

DET

ADJ

NOUN PUNCT

PROPN

ADP

DET

ADJ

PROPN

PROPN

PUNCT

Figure: An example of the Part-of-Speech tagging task. Taken from the AnCora [45] dataset.
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Evaluation Tasks - Named Entity Recognition -
NER
• Involves identifying and classifying named entities within a text according to their

corresponding types.

• It is essential in NLP as it enables computers to extract relevant information from
unstructured text data, which can be used for a range of downstream applications.

• Named entities are typically classified into categories such as people, places,
organizations, or miscellaneous entities.

• Entities may consist of multiple words. This complexity requires the adoption of the
BIO annotation scheme in NER datasets, where each word is labeled as either the
beginning (B) of an entity, inside (I) an entity, or outside (O) of any entity.

• Spanish subset of the CoNLL-2002 shared task dataset [46].
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Evaluation Tasks - Named Entity Recognition -
NER - Example

En su lugar entró el chileno Iván Luis Zamorano

PER
Figure: An example of named entity recognition. Taken from the CoNLL2002 NER [46] dataset.
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Evaluation Tasks - Question Answering - MLQA -
SQAC - TAR/XQuAD
• Extractive Question Answering: which aims to extract a span of words from a given

context text that fully answers a question posed about that context.
• Spanish subset of MLQA [27]

• Multilingual dataset, created by translating English QA instances into 6 languages.
• The dataset provides a validation and a test set for each language, as well as a

machine-translated version of the SQuAD v1.1 [38] as a training set.
• TAR [6] + XQuAD [2]

• TAR [6] is another machine-translated dataset from SQuAD v1.1 to Spanish.
• XQuAD [2] provides a test set that was obtained from SQuAD v1.1 and professionally

translated into 11 different languages, including Spanish.
• Following the setup proposed by [10], we combined the train and validation sets from

TAR and the Spanish test set from XQuAD as a single evaluation dataset.
• SQAC [20]

• May offer a more valuable resource for addressing Spanish language-related challenges,
since it is the only one specifically designed for the Spanish language.
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Evaluation Tasks - Question Answering - MLQA -
SQAC - TAR/XQuAD - Example

El fútbol chileno le dio la primer alegría a sus
simpatizantes después de casi cien años, obtuvo la

Copa América que este año tuvo a ese país
sudamericano como anfitrión. El partido debió

extenderse hasta la definición vía penales por haber
finalizado sin goles. Por su parte la selección de fútbol
de Argentina suma su tercer derrota en finales y la falta

de títulos desde 1993.

¿Qué ansiado trofeo
ganó la selección
chilena de fútbol?

¿A qué país se
enfrentó Chile en la

final del torneo?

¿Cómo se decidió el
resultado del partido

a falta de goles?

la Copa América Argentina vía penales

Figure: An example of question answering. Taken from the SQAC [20] dataset. 67 / 50



Evaluation Metrics - Accuracy

Accuracy is a metric that calculates the ratio of correct predictions to the total number of
predictions made by a model. It can be expressed mathematically as:

Accuracy =
Correct Predictions

All Predictions
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Evaluation Metrics - F1 Score

In the context of binary classification, Precision is defined as the proportion of examples
classified as positive that are truly positive. This can be expressed as:

Precision =
True Positives

True Positives + False Positives

Recall is defined as the proportion of truly positive examples that are correctly classified.
This can be expressed as:

Recall =
True Positives

True Positives + False Negatives

The F1 Score is then defined as the harmonic mean of Precision and Recall, given by:

F1 Score =
2 · Precision · Recall

Precision + Recall
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Evaluation Metrics - Exact Match

In the case of Question Answering, the Exact Match metric compares the predicted
answer string, ps , with the correct answer string, cs . The Exact Match for a single
example is defined as:

Exact Matchsingle =

{
1, if ps == cs

0, otherwise

The Exact Match for a collection of pairs (ps , cs) ∈ A is then defined as the average of
the Exact Match for a single example, expressed as:

Exact Match =
∑

(ps ,cs)∈A

Exact Matchsingle(ps , cs)

|A|
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ALBETO - Dataset - SUC

• General domain corpora.

• Same corpus [8] used on BETO [10].

• 300M lines, 3B tokens, 18.4B chars.

• Sources: Spanish Wikis (dump of April 2019), Books, News, Subtitles, European
Parliment, TED Talks, etc.
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ALBETO - Preprocessing

• Identical to BETO [10] and very simple.

• Removing URLs and listings.

• Removing multiple whitespaces.

• Lowercase.
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ALBETO - Pre-training Details
• MLM and SOP.

• Single TPU v3-8 for each model.

• A maximum sequence length of 512 was used for pre-training, and the largest
multiple of 64 that fit in the TPU memory was selected as the batch size.

• We experienced divergence in the loss on the large and xlarge models, this issue
forced to stop the training and restart it from an earlier checkpoint with a slightly
lower learning rate.

Model Learning Rate Batch Size Warmup Ratio Warmup Steps Total Steps Training Time (days)
ALBETO tiny 1.25e-3 2,048 1.25e-2 125,000 8,300,000 58.2
ALBETO base 8.83e-4 960 6.25e-3 53,333 3,650,000 70.4
ALBETO large 6.25e-4 512 3.12e-3 12,500 1,450,000 42.0
ALBETO xlarge 3.12e-4 128 7.81e-4 6,250 2,775,000 64.2
ALBETO xxlarge 3.12e-4 128 7.81e-4 3,125 1,650,000 70.7

Table: Training details of all ALBETO models, which were trained using a single TPU v3-8 each one.
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ALBETO - Training Loss - tiny
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Figure: The progression of the training loss on the ALBETO tiny model.
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ALBETO - Training Loss - base
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Figure: The progression of the training loss on the ALBETO base model.

75 / 50



ALBETO - Training Loss - large
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Figure: The progression of the training loss on the ALBETO large model.
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ALBETO - Training Loss - xlarge
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Figure: The progression of the training loss on the ALBETO xlarge model.
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ALBETO - Training Loss - xxlarge
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Figure: The progression of the training loss on the ALBETO xxlarge model.
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ALBETO - Fine-tuning Details

• We conducted a hyperparameter search on BETO, DistilBETO, RoBERTa-BNE,
BERTIN, ALBETO tiny and base, exploring combinations of batch size {16, 32, 64},
learning rate {1e-5, 2e-5, 3e-5, 5e-5}, and number of epochs 2, 3, 4.

• For the larger ALBETO models (large, xlarge, and xxlarge), we reduced the learning
rates to {1e-6, 2e-6, 3e-6, 5e-6} to mitigate numerical instability issues during
training.

• These fine-tuning procedures were performed on one to two NVIDIA RTX 3090
GPUs, depending on the model and task.

• To fine-tune the largest models on QA, we utilized two NVIDIA A100 GPUs from the
Patagón supercomputer [31].

• We used gradient accumulation in situations where the GPU memory was insufficient
to reach the target batch size.
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Speedy Gonzales: KD Implementation - Text
Classification - Single Sentence

Teacher Model

[CLS] Token 1 Token 2 Token 3 Token 4 Token 5 Token N [SEP]. . .

hcls h1 h2 h3 h4 h5 hN hsep. . .

Feed Forward

Tanh

Feed Forward

h'cls

Student Model

[CLS] Token 1 Token 2 Token 3 Token 4 Token 5 Token M [SEP]. . .

hcls h1 h2 h3 h4 h5 hM hsep. . .

Feed Forward

Tanh

Feed Forward

h'cls

Knowledge
Distillation

To be
trained

Already
trained 

Figure: Implementation of KD for text classifications tasks that use a single sentence as input. 80 / 50



Speedy Gonzales: KD Implementation - Text
Classification - Two Sentences

Teacher Model

[CLS] Token 1 Token N [SEP] Token 1 Token M [SEP]. . .

hcls h1 hN h1 hM hsep. . .

Feed Forward

Tanh

Feed Forward

h'cls

Feed Forward

Tanh

Feed Forward

h'cls

Knowledge
Distillation

. . .

. . . hsep

Student Model

[CLS] Token 1 Token J [SEP] Token 1 Token K [SEP]. . .

hcls h1 hJ h1 hK hsep

. . .

hsep

Sentence 1 Sentence 2 Sentence 1 Sentence 2

. . . . . .
Already
trained 

To be
trained

Figure: Implementation of KD for text classifications tasks that use two sentences as input. 81 / 50



Speedy Gonzales: KD Implementation - Sequence
Tagging

Teacher Model

[CLS] Token 1 Token 2 Token 3 Token 4 Token 5 Token N [SEP]. . .

hcls h1 h2 h3 h4 h5 hN hsep. . .
Feed Forward

h'seq

Student Model

[CLS] Token 1 Token 2 Token 3 Token 4 Token 5 Token M [SEP]. . .

hcls h1 h2 h3 h4 h5 hM hsep. . .
Feed Forward

h'seq

Knowledge
Distillation

h'cls h'1 h'2 h'3 h'4 h'5 h'N h'sep h'cls h'1 h'2 h'3 h'4 h'5 h'M h'sep

Filter non-first tokens Filter non-first tokens

hF1 hF2 hF3 hFk

. . .

. . . hF1 hF2 hF3 hFk

. . .

. . .

Already
trained 

To be
trained

Figure: Implementation of KD for sequence tagging tasks. The tokens marked with the blue color
represents the property of being the first token of a word.
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Speedy Gonzales: KD Implementation - Sequence
Tagging - Same Vocabulary

Teacher Model

[CLS] Token 1 Token 2 Token 3 Token 4 Token 5 Token N [SEP]. . .

hcls h1 h2 h3 h4 h5 hN hsep. . .
Feed Forward

h'seq

Student Model

[CLS] Token 1 Token 2 Token 3 Token 4 Token 5 Token N [SEP]. . .

hcls h1 h2 h3 h4 h5 hN hsep. . .
Feed Forward

h'seq

Knowledge
Distillation

h'cls h'1 h'2 h'3 h'4 h'5 h'N h'sep h'cls h'1 h'2 h'3 h'4 h'5 h'N h'sep

Already
trained 

To be
trained

. . .. . .

Figure: Implementation of KD for sequence tagging tasks with models that share the same vocabulary.
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Speedy Gonzales: KD Implementation - Question
Answering

Teacher Model

[CLS] Token 1 Token N [SEP] Token 1 Token M [SEP]. . .

hcls h1 hN hsep h1 hM hsep. . .
Feed Forward - Out dim = 2

Student Model

[CLS] Token 1 Token X [SEP] Token 1 Token Y [SEP]. . .

hcls h1 hX hsep h1 hY hsep. . .
Feed Forward - Out dim = 2

Knowledge
Distillation

h'cls h'1 h'N h'sep h'1 h'M h'sep h'cls h'1 h'X h'sep h'1 h'Y h'sep

Filter non-first tokens Filter non-first tokens

hF1 hF2 hF3 hFk

. . .

. . . hF1 hF2 hF3 hFk

. . .

. . .

Already
trained 

To be
trained

. . . . . .

. . .

. . .

. . .

. . .

h'seq h'seq

Split Split

h'start h'end h'start h'end

Knowledge
Distillation

Question Context Question Context

Figure: Implementation of KD for question answering datasets. The tokens marked with the blue color
represents the property of being the first token of a word. 84 / 50



Speedy Gonzales: KD Implementation - Question
Answering - Same Vocabulary

Teacher Model

[CLS] Token 1 Token N [SEP] Token 1 Token M [SEP]. . .

hcls h1 hN hsep h1 hM hsep. . .
Feed Forward - Out dim = 2

Student Model

[CLS] Token 1 Token N [SEP] Token 1 Token M [SEP]. . .

hcls h1 hN hsep h1 hM hsep. . .
Feed Forward - Out dim = 2

Knowledge
Distillation

h'cls h'1 h'N h'sep h'1 h'M h'sep h'cls h'1 h'N h'sep h'1 h'M h'sep. . . . . .

Already
trained 

To be
trained

. . . . . .

. . .

. . .

. . .

. . .
h'seq

Split

h'start h'end h'start h'end

Knowledge
Distillation

Question Context Question Context

h'seq

Split

Figure: Implementation of KD for question answering datasets with models that share the same vocabulary.
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Speedy Gonzales: Other details

• Our code uses Python and PyTorch [32].

• To measure MACs we used the THOP1 library.

• We conducted initial experiments utilizing three distinct loss functions:
mean-squared error loss, cross-entropy loss, and KL-divergence loss. We varied the
parameters α and T across these losses using Optuna [1]. The outcomes of these
experiments revealed that the optimal settings were α = 0 and T = 1. Although all
three losses yielded satisfactory outcomes with this configuration, KL-divergence
produced marginally superior results.

1https://github.com/Lyken17/pytorch-OpCounter
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Speedy Gonzales: Selected Teacher Models

Dataset Teacher Model
MLDoc RoBERTa BNE large
PAWS-X ALBETO xxlarge
XNLI ALBETO xxlarge
POS RoBERTa BNE base
NER RoBERTa BNE base
MLQA ALBETO xxlarge
SQAC ALBETO xxlarge
TAR / XQuAD ALBETO xxlarge

Table: The teacher models selected for each task.

Table 10 presents the teacher models selected for each task. The selection process is
based on the lowest validation loss achieved among the candidate teacher models that
were fine-tuned for each task.
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[25] Hang Le, Löıc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin
Lecouteux, Alexandre Allauzen, Benoit Crabbé, Laurent Besacier, and Didier
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