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Introduction
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Motivation

● How to use AI to 
enhance human ability to 
create music?

● How can people 
control/interact with 
IA-based models to 
achieve this goal?
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Preamble

● People tend to create music 
starting by creating small 
pieces and then assembling 
them into a larger piece. [1]

● Process is highly not 
sequential.

● Nature of the process contrasts 
with most common approaches 
to Music Generation in AI.

● Music Inpainting Task, a 
sub-task of Music Generation 
better models this procedure.

[1] B. Bogunović, Creative cognition in composing music, 2019



Music 
Inpainting
Task Definition

● Given: a past musical context 
Cp, a future musical context Cf, 
the modeling task is to 
generate an inpainted 
sequence Cm which can 
connect Cp and Cf in a 
musically meaningful manner.
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Issues in 
evaluation
● Proposed methods lack of 

standardized evaluation 
setups.

● Different data representation, 
datasets, metrics and 
baselines.

● We don’t know the state of the 
art, and thus, we don’t know if 
we are making progress.
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Problem Statement

Evaluation Challenges

- Metrics values differ when changing representations for the exact same data.

-  The sets of metrics for evaluation changes from paper to paper, measuring different features.

- Training and evaluation of models done over different datasets that vary in characteristics such as: format, 

number of samples, style, notes distribution, etc.

- The output is generated through a random process.
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Hypothesis:

It is possible to find a unifying pattern across several models of musical 

score inpainting that enables a direct comparison of approaches.

Additionally, we argue that it is possible to extend current evaluation 

procedures to measure the expected variability of a model.
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Objective:

To develop an evaluation framework to properly compare different 

approaches for musical score inpainting, thus providing solid evidence 

to define the current progress of this task and its state of the art.
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Background & Preliminary Concepts



Data 
representation
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● Raw Audio vs 
Symbolic Music

● Data vectorization
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Our proposal: 
MUSIB
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Datasets
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Raw datasets:

● IrishFolkSong (~45k songs)
● JSBChorales (~300 songs)

Context inputs:

● IrishFolkSong (~300k 
samples)

● JSB Chorales (~2.4k 
samples)



Data Cleaning
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Monophonic datasets:

● Empty files
● Repeated files
● 4/4 Time Signature
● Monophony
● Min Length (16 

measures)



Music Inpainting 
Models
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● Out of 8 models, we 
selected 4 models based 
on on the feasibility of 
replicating their code in a 
single environment:

● InpaintNet
● SketchNet
● AnticipationRNN
● VLI



InpaintNet
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● Based in VAE 
encoding for each 
measure.

● Temporal modeling 
through RNN.



SketchNet
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● Based in VAE 
encoding for each 
measure.

● Separated encoding 
for Rhythm and 
Pitch.

● Temporal modeling 
through GRU



Anticipation RNN
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● Each time-step is a 
token.

● Temporal modelling 
through RNN.



VLI
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● Discretization based 
on relative position 
of each note.

● Temporal modelling 
through pretrained 
XL-Net.



Metrics
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We propose two types of 
metrics:

● Note Metrics
● Divergence Metrics



Note Metrics
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Directly compare note attributes 
in predicted data vs true data, 
one note at time. 

We argue that for measuring the 
quality of notes predicted, we 
need to compare at least three 
dimensions: 

● Position 
● Pitch 
● Rhythm.
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Note Metrics

Position Score

- Metric proposed in this work that measures the similarity of two musical sequences in terms of the 
position of their notes.

- We argue that to correctly measure notes’ position similarity, a metric needs to be able to:

1. Be equipped with a strategy to align the notes’ positions within gold and predicted sequences 
independently of the order in which they appear.

2. Handle sequences with potentially different number of notes.

3. Reward sequences that share the same positions for their notes.

4. Penalize sequences that do not share the same positions for their notes.

5. Penalize generated sequences with different number of notes than expected



30
Note Metrics

Position Score

- We construct our metric as an F1 score calculated from gold and predicted note’s positions whose 
internal variables (i.e., True Positives, False Positives, False Negatives) are computed as follows:

• True Positives (TP): A note’s position is present in both sequences.

• False Positives (FP): A note’s position is present in the generated sequence when it was not present 
in the gold sequence.

• False Negatives (FN): A note’s position is missing in the generated sequence when it was present in 
the gold sequence.

Note that True Negatives are not part of the F1 score function and thus its definition is not stated here.
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Note Metrics

Position Score

Next, we discuss how each of the the aforementioned requirements are satisfied by our F1 metric:

- 1. By defining the process of alignment based on checking the presence of a note within a given sequence we resolve the ordering 
problem between non-matching sequences.

- 2. Building the internal variables of the F1 Score based on the alignment of positions allows us to compare sequences with different 
number of notes since the match of positions for the i-th and j-th note may occur at arbitrary indexes in arbitrary long sequences.

- 3. Both values precision and recall will increase as the number of True Positives increases, increasing F1-Score performance, and thus 
rewarding sequences that share positions.

- 4. Both values precision and recall will decay as F P and F N increase. Note that metric functions such as Accuracy would not be able to 
penalize missing notes (F N ). Additionally, there is no difference in cost for different types of mis-classifications in this task. Either 
adding or removing notes to the generated sequence with respect to the gold sequence would have the same impact in musicality. Due 
to this, both the recall and precision do not need particular weights when being evaluated, discarding alternatives such as Fβ functions.

- 5. If the generated sequence contains more notes than the true sequence, the number of false positives will increase. Similarly, if the 
number of notes is smaller than the true sequence, the number of false negatives will increase. Both cases imply that F1-Score will 
decrease in performance, either by a worse Recall or Precision. This implies that Position Score penalizes sequences with a different 
number of notes than expected.
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Note Metrics

Pitch Accuracy
Firstly defined by Chen et Al. (2020), is the percent of pitches correctly 
predicted over the total of pitches in a sequence. 

The metric is thought as a comparison of two musical sequences, where if 
a pitch is present at a given time index, the metric function checks the 
equality of this pitch in the same index for the other sequence.

For our evaluation procedure we slightly modified the application of the 
metric. We argue that the result of this metric may be misleading in 
explaining two fundamentally different musical phenomenons. 



Pitch Accuracy 
edge-case
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With this metric as is, a mismatch of 
pitch might represent either:

1. The first note and the note to be 
compared (both at time index i) 
do not share the same pitch (e.g. 
one note is F3 and the other one 
is D4), or

2. There is a note at time index i for 
the first sequence, but there is no 
matching note at the same time 
index in the sequence to compare 
because there is a silence or hold 
token.
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Note Metrics

Rhythm Accuracy

Firstly defined by Chen et Al. [11], is the percent of notes’ 
duration correctly predicted over the total of notes.



Rhythm Accuracy 
edge-case
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We argue that this metric as is does not 
correctly measure the performance of the 
models due to differences in the results when 
it is applied to the same data with different 
notes’ resolutions.

Note that the issue comes from the fact that 
the duration of a note is stored as multiple 
tokens, one per time-step. Changing the 
resolution of the sequence affects the 
representation of hold/silence classes while 
keeping intact the number pitch classes. This 
unbalances the overall distribution and raises 
errors where rhythm tokens are confused 
with pitch tokens.



Rhythm Accuracy 
fix
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In order to fix this behaviour we need to 
transform the input data before applying the 
metric such that the rhythm is a single value 
attached to a note instead of multiple values 
distributed among multiple time steps. 

This can be done by representing each note 
as Note-based discretization including the 
number of time-steps that a note is held as 
the rhythm value. 

The comparison then is applied similarly to 
Pitch Accuracy, where if two notes match in 
position, then the rhythm values of both notes 
are compared else the comparison is skipped 
and falls under Position Score evaluation.



Divergence 
Metrics
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● Variability in music is 
common and even 
desirable. Note Metrics 
don’t capture that.

● How do we verify that a 
given musical attribute in 
a set of predicted songs 
is within the correct 
range of variability?

● Look at the distributions!



Divergence 
Metrics
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● We can apply a function 
that maps a sequence to a 
given number

● The set of samples will 
transform into a 
distribution of values.

● If the training set and 
generated set have similar 
distributions, the models is 
doing a good job 
mimicking the musical 
properties of the dataset.
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Note Metrics



Results
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Results - IrishFolk



Results - JSB 
Chorales
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Results - IrishFolk



Results - JSB 
Chorales
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Conclusions
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Conclusions

Conclusions

- We proposed MUSIB, a new standardization framework and benchmark for 

musical score inpainting evaluation.

- We compiled, standardized and extended metrics to measure meaningful 

musical attributes.
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Conclusions

Future Work

- Polyphonic music inpainting models

- Variable length infilling task

- Data augmentation strategies


